Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 790: 147972, 2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34082326

RESUMO

The coupling removal of acid volatile sulfide (AVS), ferrous iron, and ammonia nitrogen has been applied for black-odorous sediment remediation. In this study, calcium nitrate with different N/(S + Fe) ratios (0.45, 0.90, 1.20 and 1.80) was added into black-odorous sediment in four systems named R1, R2, R3, and R4. Results showed that the removal rate of AVS was 76.40% in the R1, which was lower compared with rates in R2-R4 around 96.70%. The ferrous oxidation rate was approximately 87.00% in R2-R4, which was considerably higher than that in the R1 (24.62%). And the ammonia was reduced by 81.02%, 88.00%, 100%, and 57.18% in R1, R2, R3 and R4, respectively. During the reaction, nitrite accumulation was observed, indicating partial denitrification. Moreover, microbes related to autotrophic denitrification (e.g., genus Thiobacillus, Dok59, GOUTA19, Gallionella, with the highest abundance of 15.40%, 13.21%, 8.79%, 9.44%, respectively) were detected in all systems. Furthermore, the anammox bacteria Candidatus_Brocadia with the highest abundance of 3.44% and 4.00% in R2 and R3, respectively was also found. These findings confirmed that AVS, ferrous iron, and ammonia nitrogen could be simultaneously removed via autotrophic denitrification coupled with anammox in black-odorous sediment by nitrate addition.


Assuntos
Amônia , Desnitrificação , Reatores Biológicos , Ferro , Nitratos , Nitrogênio , Oxirredução , Sulfetos
2.
Environ Res ; 190: 109979, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32745537

RESUMO

Nitrate-driven sulfide/ferrous oxidation has been proved a cost-effective approach for river sediments in-situ odor control. However, calcium nitrate addition would sharply increase ammonium concentration in interstitial water and the mechanism was not yet clear. In this work, though sulfide and ferrous iron were efficiently oxidized, about 102% of NH4+ concentration increased in interstitial water on the first day of calcium nitrate injection (30 mg kg dwt-1), and about 31% more NH4+ increase at the 21st days was observed. To discover the mechanism of ammonium sharp release, desorption kinetics experiment was conducted and the results suggested that the short-time sharp releases of ammonium when calcium nitrate was added could be attributed to the chemical extraction of exchangeable ammonium by calcium ion. Furthermore, at the end of treatment, many genus such as Thiobacillus, Sulfurimonas, Thermomonas, and Clostridium, which were closely related to sulfide and ferrous-driven denitrification and dissimilatory nitrate reduction to ammonium (DNRA), were identified by 16S rRNA Illumina sequencing method. These findings indicated the long-time increase of ammonium might be determined by the biochemical processes (e.g. DNRA) driven by nitrate reduction. Therefore, to avoid the impact of ammonium release, an alternative subsurface injection method was introduced in this work, and the results showed that ammonium releases could be well controlled when the injection position was beneath 10 cm of the sediment surface.


Assuntos
Compostos de Amônio , Nitratos , Compostos de Cálcio , Sedimentos Geológicos , Odorantes , Oxirredução , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...